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We study Euler-Lagrange-type operators, not necessarily variational (i.e., deriv-
able from a variational principle). We get a master equation which is well suited
for many considerations. We obtain several results in gauge theories: the
equivalence between gauge invariance and charge conservation, the relationship
between general covariance and conservation laws associated with the energy-
momentum tensor, and, in the case of free gauge fields, an interesting characteriz-
ation of the associated variational operators.

1. INTRODUCTION

As is well known, the Lagrangian formulation of the classical theory
of interaction between gauge and matter fields is the most convenient way
of discussing gauge invariance, general covariance, and conservation laws.
Moreover, the fiber bundle approach is almost unavoidable for a better
understanding of the theory (Mayer, 1977; Konopleva and Popov, 1981).

In this paper we are concerned with Euler-Lagrange-type operators
that are not necessarily variational. We establish a formula for their Lie
derivative (master equation) which has a key role in our considerations.
The formula has two terms and, roughly speaking, the vanishing of one
term refers to the condition that operators are variational, while the vanish-
ing of the other refers to the conservation laws. So it is clear that, for
example, the gauge invariance of variational operators may be equivalent
to charge conservation.

The paper is related to some earlier work on gauge theories (Mangiarotti
and Modugno, 1985; Mangiarotti, 1986, 1987). The reader is urged to start
with the Appendix, where we prove the master equation and discuss its
relationship with variational operators. Concepts and results from jet spaces
are needed. Let us note that, in general, the use of jet spaces, avoiding a
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great deal of unnecessary coordinate manipulations, makes the geometrical
and physical meanings more transparent.

Section 2 introduces some preliminary notations, concepts, and results.
Section 3 deals with gauge-invariant and generally covariant Lagrangian
densities. The next two sections are devoted to the relations among gauge
invariance, general covariance, and conservation laws. Finally, in the last
section we consider the special case of free gauge fields and get an interesting
characterization of the associated variational operators.

2. PRELIMINARIES

This section is a collection of basic notations, concepts, and results
needed in subsequent considerations. The detailed proofs can be found in
Mangiarotti and Modugno (1983, 1985) and Mangiarotti (1987).

2.1. The Configuration Bundle

Let P> M be a principal fiber bundle with structure Lie group G
(Kobayashi and Nomizu, 1963). The base manifold M is the space-time
manifold. A basic role is played by the quotient spaces VgP=
VP/G < TP = TP/ G which are vector bundles over M. The vertical bundle
VsP—> M is a Lie algebra bundle (gauge algebra bundle) whose fibers are
isomorphic to g, the Lie algebra of G.

A principal connection A on P (gauge potential) is then a splitting of
the exact sequence of vector bundles over M,

A
0> VgP>TPSTM - O (2.1)
It follows that principal connections A are sections of an affine bundle
C -~ M whose vector bundle is the tensor product bundle VC = T*M ® VP.

Let E >'M be a vector bundle associated with P (matter bundle) and
let Lc\/, TM > M be the bundle of the Lorentz metrics (M must satisfy
well:known topological conditions). Since we are concerned with the inter-
action among gravitational, gauge, and matter fields, our configuration
bundle is Q> M, where Q=L X K and K =C X E.

In order to introduce local coordinates, we need to choose a local
gauge U X G on P, over a coordinate neighborhood (U, x*) in M, and a
basis (e,) of the Lie algebra g, where 1=A<m=dim M and 1=p=n=
dim G. Then we denote by c,, the right structure constants of g with respect
to the basis (e,).

The induced standard coordinates on L, TgP, and C are denoted by
(x*, g7®), (x*, %*, £”), and (x*, a}), respectively. If A is a principal connec-
tion, its local expression is

A=dx"® (3, — Ale,) (2.2)
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where A} are local functions on M. These functions are just the gauge
potentials of A with respect to the gauge U X G, chart (U, x*), and basis
(e,). About the coordinates on C, we use the convention af - A= —Af.
A principal connection A induces a linear connection V* in the vector
bundle V5P > M. It is easily seen that the connection parameters for V* are
Vie,=—c), AL dx* @e, (2.3)
Now let p: g—» End(F) be the Lie algebra representation associated
with the matter bundle E - M, F being its typical fiber. Let (¢;) be a basis
of F, where 1=i=<I=dim F. Then we put p(e,)e;=p,;e;,. The induced
standard coordinates on E are denoted by (x* ¢'). It is clear that p
determines a morphism of Lie algebra bundles p: VoP > E*® E whose
local expression is just pj;.
A principal connection A induces a linear connection V* in the vector
bundle E > M. It is easily seen that the connection parameters for V* are

Ve =pi AL dx* ®e; (2.4)

We have two canonical objects related to our configuration bundle

Q- M, namely the curvature 2-form F: J,C->A\>T*M® VP and the

interaction 1-form y: C X, J,E > T*M ® E. Using the induced coordinates

(x*, a4, a”,) and (x*, ¢, ¢}) on J,C and J,E, respectively, we find the
local expressions of F and v in the form

F,.=a,,—a,,—cakal (2.5)
Yi=¢r—ppale’ (2.6)

The meaning of F and v is clear. Let A: M - C be a principal connec-
tion and let ¢: M - E be a matter field. Then F ° j,A = F, is the curvature
of A (field strength associated with A) and yo(A,j,¢)=V* is the
covariant derivative of ¢ with respect to the linear connection V* induced
by Aon E-> M.

2.2. Lagrangians and Operators

Let #: L Xp; J;K - A\™ T*M be a Lagrangian density. Locally we write
¥ =Lw, where L is a local function on L X,, J;K. The choice of this
particular jet extension, in which we do not consider the jets of the Lorentz
metrics, is motivated by the specific physical applications. If we fix a metric
on M, this choice allows us to get automatically the metric energy-
momentum tensor of the interaction between gauge and matter fields.

In the sequel we need the momentum map of %, which is the direct
sum of the two following objects:

m—1
(mx): LxJ,K=> A T*M®(V*C®E¥) 2.7)
M
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m=ayte,®4,® €, ayt =aytL (2.8)
x=xie,®e,  xi=oiL (29)

where w, =98, | w. Note that y is an (m —1)-horizontal form valued on E*.
Using the representation p: VoP—> E*®E, we can do a pullback of it,
namely

m—1
j=p*x: LXJL K> AN TEMQVEP
M
N NN (2.10)
.]=.]pr®epa ]p=ppj‘pJXi
As we shall see, this is just the current associated with the matter fields.

Coming to m, first of all note that V¥*C = TM ® VEP. Then it is clear
that we cannot assert that 7 is an (m —2)-horizontal form valued on V%P
As we shall see, this becomes true when ¥ is gauge invariant, and this will
be relevant in many considerations.

Let Eg: J,Q-> A" T*M ® V*Q be the Euler-Lagrange operator associ-
ated with & (see the Appendix). Since we have V*Q=V, T*"M®TM®
VEP® E*, it follows from (A.4) that E is a direct sum, i.e., E¢ = (7, €, 7),
where

m—1

7 LXJJK> A T*"MQT*M, T=Thw, ®dx* (2.11)
M

m—1

e LLXLK-> A\ T*"M®VEP,  e=zlw,®¢  (2.12)
M

n: LLx LK~>AT*M®E* gp=no®eé (2.13)
M

The local expressions are

Th=-28"5,5L (2.14)
eh =oh L—Jmyt (2.15)
m=0L—Jx: (2.16)

Finally, we introduce the canonical energy-momentum tensor Ty
associated with £. This is an object as 7 [see (2.11)], whose local expression
is

T, =L8)—FL,my* ~voxX} (2.17)

Its meaning will become clear later.
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2.3. The Basic Representation

Let ¢: M —» TsP be a section. We know from (2.1) that £ projects into
a vector field on M, say u: M > TM. A basic fact is that we can associate
with & a vector field on Q, say u,: Q- TQ. This is just the infinitesimal
version of the well-known fact that a principal automorphism on P induces
an automorphism on C, E, and M (and hence on TM). The map &—u; is
an R-Lie algebras morphism. Its local expression is

E=ua,+ &, u=u'a,
u,=utd, +(g" 0, uf + g 0,u")d,p + (0,&" — ald,u” (2.18)
+epaah €937 + py 00’9,
where u”* and &” are local functions on M.

Let us denote by the same symbol u, the lift of the representation (2.18)
on L x, JJK according to (Al). We say that the Lagrangian density
&L L xp JuK > A™ T*M is generally covariant if we have L, % =0 for each
section ¢: M - TgP (when the sections & are vertical, i.e., we have & M -

VP, we speak of gauge invariance). Using (2.18) and (A1), we find that &
is generally covariant iff the following conditions are satisfied:

A A
Tyt =0

A rop Ao i Fo A __
T+ Cpglemy” Tpg;o’xi =0

Cp(@BoT L+ al o)+ pii(@a, L+ @l x}) =0 (2.19)
TA — T/\
3.,L=0

where 75 and T, have been defined in (2.14) and (2.17), respectively. The
first three conditions are just equivalent to the gauge invariance of .%.

Now let E =(7, &, n) be an Euler-Lagrange-type operator, i.e., 7, &,
and 7 are morphisms as shown in (2.11), (2.12), and (2.13), respectively.
Moreover, let us denote by the same symbol u, the lift of the representation
(2.18) on J, L X, J,K according to (A1). We say that E is generally covariant
if we have L, E=0 for each section & M > TP (when the sections ¢
are vertical, we speak of gauge invariance). Since we have L.E=
(L, Lye, L,m), it is clear that E is generally covariant (gauge invariant)
ift =, &, and 5 are. From (A5) it follows that if E=Eg, i.e., if E is the
Euler-Lagrange operator associated with £, then E. is generally covariant
(gauge invariant) if % is. In general, the converse is not true.

It is easily seen that the canonical energy-momentum tensor T associ-
ated with £, as defined in (2.17), has the property

Lu§ Te= TLufi’
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for each section &: M - TP It follows that T is generally covariant (gauge
invariant) if & is.

As we have done for £, we could write explicitly the conditions that
E must satisfy to be generally covaiiant (gauge invariant), but we do not
need them.

3. COVARIANT LAGRANGIAN DENSITIES

In this section we consider gauge-invariant and generally covariant
Lagrangian densities. The aim is to obtain two identities which have a key
role in subsequent considerations. We also consider some questions related
to charge conservation.

3.1. Gauge-Invariant Lagrangians

As before, let ¥: L X, JIJK > A™ T*M be a Lagrangian density. Then
we can interpret the conditions of gauge invariance, i.e., the first three
conditions (2.19), in an interesting way (Mangiarotti, 1986, 1987). The first
condition tells us that 7 is just an (m —2)-horizontal form defined on
L x5 J;K and valued on VEP. Then, using the jet shift exterior covariant
differential induced by (2.3) (Mangiarotti, 1987), we can compute
Va: J\L Xy LK> A" T*M® VEP, getting

Va=—(Lhayt+ca Mo, ® el (3.1)

Note that the difference between (3.1) and the usual exterior covariant

differential is that we have the formal derivatives instead of the partial ones.

Hence, the form V7 is lifted over J,L x,, ,K.
It follows easily that the second condition (2.19) is equivalent to

e=Vm—j (3.2)

where j = p*y is the current given by (2.10).
A further computation for V># yields

Vi Lx K> AT*M®VEP
M
. o (33)
V=) (a§ot L+l w* + plial 'y o ® e
which will be used later. Note that V7 projects down onto the original
space L X, J; K.
Finally, another computation shows that the third condition (2.19) is

equivalent to

Ve—p*n=0, Jieg—cpaler —pgen=0 (3.4)
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where V is again the jet differential as in (3.2) and p* 7 denotes the pullback
as in (2.10), This is just, as we shall see, the charge conservation identity
associated with the internal symmetries.

3.2. Generally Covariant Lagrangians

Suppose that & is gauge invariant and, moreover, suppose also that
% satisfies the fourth condition (2.19), i.e., 7 = T. Then a direct computation
yields

L — KR s — Fraet —yumi=0d.L (3.5)

where 2K8 =gP* (9r8ua T 9a8ur —9.81.) are the Christoffel symbols. It
follows that the last condition (2.19) is equivalent to

Vri—Fle—-vy]|n=0 (3.6)

which has an intrinsic meaning. Here V denotes the jet shift exterior
covariant differential induced by the Levi-Civita connection, as is clear from
(3.5). Moreover, the symbol | denotes obvious contraction. This is the
energy-momentum tensor identity associated with the external symmetries.

Let us make some remarks about (3.6). Let u: M > TM be a vector
field. Then we have

dy(ul )=Vu | 7+u]|Vr 3.7)

where dy is the formal exterior differential (in which we take the formal
derivatives instead of the partial ones; see also the Appendix) and V is the
jet shift differential as in (3.6). We also have

Vu | 1=-2(3,u*+K5zu")g"", Lo =L,g**3,5Le (3.8)

where we have used the definition (2.14) of .

Now suppose that we fix a metric on M and that u is a symmetry of
this metric (i.e., a Killing vector field). Then from (3.6)-(3.8) it follows that
u | 7 is a conserved current.

3.3. On Charge Conservation

As is well known, the standard physical situation is that in which we
have

E=Lo+ Ly, $0==?0°F, =-(£M=jM°')' (3.9)

where #, and %), are Lagrangian densities defined on the spaces
LXy N2 T*M® VP and L x,, T*M ® E, respectively. In other words,
this is the minimal coupling situation.
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Let us put &£y, = Lyw, where Ly, is a local function on L X, C X J, E.

Then we have

3y L +ph@’07 Ly =0 (3.10)
i.e., j5 =—3) L, as follows from (2.10). So the current j is just given by the
first variation of the matter Lagrangian £, with respect to the gauge
potential.

From (3.9) it follows easily that both ¥, and %), (and hence ¥) satisfy
the first two conditions (2.19). Then, using (3.3), we easily see that the two
following statements are equivalent

(i) Both %, and &), are gauge invariant.

(ii) & is gauge invariant and V7 = 0.

A gauge-invariant Lagrangian %, is just a free gauge field, while the
gauge-invariant Lagrangian £, describes the interaction between gauge
and matter fields without the mass terms. Note that g,=Vs is just the
Euler-Lagrange operator associated with %, and that V?7 =0 is just the
charge conservation identity for free gauge fields. As we shall see later, if
g0: HL Xp LK > A" T*M® VEP is a gauge-invariant Euler-Lagrange-
type operator, then ¢, is locally variational iff Ve, =0.

Now let us fix a Lorentz metric on M and let us consider any Lagrangian
density £: J,K > \" T*M. 1t is interesting to see how, in this general
situation, the condition V> =0 allows us to discuss, in a nice way, the
conservation of charge in both of the two cases in which (i) one uses the
dynamics of the gauge field without the equation of motion of the charged
field at all and (ii) one uses the gauge invariance without using the dynamics
of the gauge field at all.

(i) Suppose that ¥ satisfies the first two conditions (2.19). Then from
(3.2) we get Vj=—-Ve and hence j yields conserved currents over the
solutions of &.

(ii) Suppose that £ is gauge invariant. Then from (3.2) and (3.4) we
get Vj=—p*n and hence j yields conserved currents over the solutions
of 7.

4. GAUGE INVARIANCE AND CHARGE CONSERVATION

In this section we consider locally variational operators of the Euler-
Lagrange type. The main result is the relationship between the gauge
invariance of such operators and the charge conservation identity. Moreover,
we consider the special case in which the structure group G is Abelian or
semisimple. Our results improve those of Horndeski (1981).

Theorem 4.1. Suppose that E =(7, ¢, ) is a locally variational Euler-
Lagrange-type operator, that is, 8E =0, where 8 is the variational operator
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introduced in the Appendix. Then the two following conditions are
equivalent:

(i) E is gauge invariant or, equivalently, 7, £, and 7 are.

(ii) Ve —p*n projects down to the base space M, i.e., we get Ve —
p*n: M-> A" T*M® VEP.

Proof. Let £: M - V5P be a vertical section. Then from (A12) we get

L, E=6(u;| E) (4.1)
where, on the right, u,: K - VK is the vertical field given by (2.18), that is,
ug = (0:€"+ €pgaR €9)37 + pr; €700, (4.2)

On the left-hand side of (4.1), u, denotes the second lift of (4.2).
Using the identity
dy(é)e)=Veé] e+E] Ve (4.3)
from (4.2) we get
u ] E=V¢je+é] prn=dy(é]e)-&] (Ve—p*y) (4.4)

Here V denotes, as is clear, the jet shift differential induced by (2.3).
Since we have (see the Appendix) 8d, (¢ | €)=0, using (4.4), from
(4.1) we get

L,E=~5[¢] (Ve—p*n)] (45)

Now let us denote by ¢, the components of Ve —p*n according to
(3.4). Then, using (A4), we can write explicitly the right-hand side of (4.5).
By requiring that it vanishes for each vertical section £ we get a set of
equations that must be satisfied by the components ¢,. The ones relative
to the bundle J,L—> M are

IolsWp + ks, =0
2JA (ayé lpp) _aZB l//p =0 (46)
aaﬁd’p —J)\ (ai‘xﬁwp) +J)LJ‘LL(0AQ/;3'(/IP) = O

which imply that 8344, =85, = .58, =0. In other words, all the fiber
derivatives of i, with respect to the bundle J,L-> M vanish. From the
other equations we get the same things concerning J;K - M. The result is
proved. M

Remark 4.2. Let &2 M - TgP be a section. Then it is easily seen that
we have

L,(p*n)=p*(L.,m), L, Ve=VL,e (4.7)
where u, is the lift of (2.18) on the appropriate jet space.
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Corollary 4.3. Suppose that the structure Lie group G is Abelian or
semisimple. Then the following conditions are equivalent:

(i) E is gauge invariant or, equivalently, 7, &, and 7 are.

(ii) Ve —p*n =0.

Proof. Suppose that E is gauge invariant and let £ M > V5P be a
vertical section. Then from (4.7) we get L,(Ve —p*n) =0 for each & This
is equivalent to ¢, 4, =0, Vp, g. The result follows (Bourbaki, 1975). W

5. GENERALLY COVARIANT OPERATORS

In this section we consider locally variational and gauge-invariant
operators of the Euler-Lagrange type. The main result is that these operators
then are generally covariant iff the further identity Vo —F | ¢ —y | n=01s
satisfied.

Lemma 5.1. Let £&: M- TP be a section and let A be a principal
connection. Then the connection A splits the section £ into a vertical part
£4 and a horizontal part u | A (the vector field u: M > TM is the projection
of ¢) whose local expressions are

Ea=(£+AfuM)e,,  u] A=u"(3,-Ale) (5.1)

as follows from (2.2). Let us denote by u, the lift of u | A over Q and by
i: J;Q— VQ its vertical part, as explained in the Appendix. Then we have

)= —(Lug“B)aa,; —[u*(a .+, AL+ cpal AL)
+(al,+AL)3,u"10} —(Vie)a, (5.2)
Proof. The local expression of u, is
Us=u"d, +(g"*0,u” +g"0,u*)d, —[u*9,A),
+(AL+a)ou* +cpah Adut 19} — ph Alute’a, (5.3)
as follows from (2.18). Then we get (5.2) from (A2). B

Lemma 5.2. Let E=(7,¢ 1) be an Euler-Lagrange-type operator.
Then we have

s ] E=uj(Vr—Fle—y]|n)+& | (Ve—p*n)
—dy(u ] v+& | €) (5.4)

where &,: C - VsP is the morphism given by &, =u’(a} + A})e,.
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Proof. The result follows from (5.2) using (3.7) and (3.8). W

Proposition 5.3. Suppose that E is locally variational and gauge
invariant. Then we have

L,E=58(is| E)=L,E
=8[u] (Vr—Fle-vy]n)]+u|(Ve—p*n) (5.5)
where u, denotes the second lift of the section £: M — T P. Note that (5.5)
is independent of the connection A.
Proof. This follows from (5.4) using (A12) and the fact that
ddy(ujr+¢&, je)=0 N

Remark 5.4. Let ¢£: M — TP be a section. Then it is easily seen that
we have

L, Vr=VL,, L,F=0, L,y=0 (5.6)

Theorem 5.5. Suppose that E is locally variational. Then the two
following conditions are equivalent:

(i) E is generally covariant or, equivalently, 7, ¢, and 7 are.

(ii) Ve—p*n=0,Vr—F | e—y | n=0.

Proof. Suppose that E is generally covariant. Then it is easily seen that
Ve—p*n=0. From (5.5) it follows that Vr—F | e —y |  projects down
on the base space M. Using (5.6), we get that V71— F | e—y | n =0. The
converse is trivial. WM

Remark 5.6. Let E =(1, €, ) be an Euler-Lagrange-type operator. Let
A be a principal connection. We say that E is A-horizontally invariant if
L, .E=0. Clearly, if E is gauge invariant and horizontally invariant with
respect to a certain connection A, then it is generally covariant.

Note that if E = E, and £ is horizontally invariant with respect to a
certain connection A, then Eg is generally covariant if it is gauge invariant.

6. A PROPERTY OF FREE GAUGE FIELDS

In this section we consider a free gauge operator, i.e., an Euler-
Lagrange-type operator defined on the bundle of connections, namely
m—1

g: HLC> N T*MRVEP

Our main result is the following. Suppose that g, is gauge invariant. then
8ey,=0, i.e., g, is locally variational iff Ve, projects down on M, i.e., we get

Veg: M>AT*MVEP
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Lemma 6.1. Let u: C—> VC be a vertical field and let A be a principal
connection. Let x € M. Then there exists a vertical section £&: M - V5P such
that

(u 0 joA)(x) = (ug ° joA)(x) (6.1)
Here, on the left, the same symbol u denotes the second lift of the field
on J,C.

Proof. Let us put u=u}d}, where u} are local functions on C.
Moreover, let £ =¢£'e, be a vertical section. The vertical field u,: C—»> VC
associated with ¢ is, according to (2.18),

u=(VE)597, (VL= +cp,al el (6.2)
Using (A8), we see that if we want to get (6.1), we must have
3rE"(x) = cpg AL(x) €%(x) + ui (A(X))
(%) = CpgdaAL(X)E7(x) + Cpg AR (X)34£7(X)
+Joui (j1A(x)) (6.3)
Nrapt (x) = CpadapAR(X) £1(x) + Cpq(3.AR(X)3pE7(X) +35A8 (X)3,£7(x))
+ p AR (X)02p €7 (x) + JJgus (A(X))
Now (6.3) shows that, if we fix the value £(x), then the derivatives of £ in
x are uniquely determined. Hence, the result follows. W
Proposition 6.2. The variational condition (A6) is equivalent to
A*(u, | deg) =0 (6.4)
for each vertical section & The operator A * is defined in (A3) and d denotes,
as in (A6), the ordinary exterior differential. In other words, (6.4) is

equivalent to 8g,=0, which is just the necessary and sufficient condition
for g, to be derivable from a sheaf of local Lagrangian densities.

Proof. The result follows immediately from (A9) and (A10) using
(6.1). W

Theorem 6.3. Any two of the following statements imply the third:

(i) 680 = O

(ii) &, is gauge invariant.

(iii) Ve, projects down to the base space M.

Proof. Let é&: M - VP be a vertical section. Then the results follow
easily from the master equation (A11),

L, eo=38(VE ] e0)+A*(u | deo) (6.5)

using (4.3). &

Remark 6.4. Suppose that the structure Lie group G is Abelian or
semisimple. Then the condition (iii) becomes Ve, =0.
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APPENDIX

In this Appendix we introduce some notations, concepts, and results
from jet spaces (Mangiarotti and Modugno, 1983), the minimum needed
to establish the master equation, a basic result for our considerations. We
also study its relationship with variational operators.

Let Y- M be a fiber bundle and let (x*, y*) be fibered coordinates on
Y,1=sA=m=dim M, 1=i=] I+ m=dim Y. The induced coordinates on
the first jet space J,Y are denoted by (x*,y’, ). The meaning is the
following. Let s: M > Y be a (local) section and put y'°s=s', which are
local functions on M. Let j;s: M > J, Y be the first jet extension of the
section 5. Then we have y)} ¢ j;s =4,s’, i.e., the partial derivatives of s’ with
respect to the coordinates x*.

As usual, the coordinate fields associated with (x*, y’, y}) are denoted
by 95, 9;, and 3}, respectively. Note that o; are local vertical fields on Y,
i.e., local sections of the vector bundle VY > Y, where VY < TY is the
vertical space to Y, TY being the tangent space to Y. Moreover, both the
fields 4; and 3} are local vertical fields on J,Y, i.e., local sections of
the vector bundle VI, Y > J, Y. As we shall see, the vertical spaces are a
main tool in our considerations.

All that we have said generalizes immediately to the higher-order jet
spaces J. Y, k> 1. For them the standard multi-index notation will be used.
In any case, we will be only concerned with the lower jet extensions.

A basic operation on jet spaces is the following. Let u: Y > TY be a
projectable vector field on Y. Locally we write u=u"9, +u's;,, where u*
and u' are local functions on M and Y, respectively. Then u can be lifted
into a (projectable) vector field on J. Y, say Au: J,Y - TJ,Y, whose local
expression is

Au=ua, +u's, +uta?
) _ . (A1)
Uyip =Dl _)’LL+A3A“FL
where A is a multi-index and J, denotes the formal derivative with respect
to x*. It is easily seen that u—Au is an R-Lie algebra morphism.

Using the projections 9: J Y X5 TS, Y > VJ.Y (Mangiarotti and
Modugno, 1983), we can define a vertical part of Au, say Au: J., Y - VI.Y
whose local expression is

Au=a's;,+J id'od, d'=u -y, u” (A2)
Note that Au is a vertical vector field iff u is vertical, i.e., u* =0 for each
l=A=m

The lifting A admits a dual operation (Bauderon, 1982) acting on vector
densities in the following way. Let a: J,Y > A" T*M ® V*J. Y be a vector
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density defined over J,Y and valued on the dual vertical space V*J Y.
Locally we write @ = 0 ® (a;dy’ +atdy)), where w =dx’' a- - - A dx™, while
a; and a? are local functions on J,Y. Then « can be lifted into a vector
density defined over J,, Y and valued on V*Y, say

Aa: L Y >AT*M@V*Y
whose local expression is
Ma=(a;+(-1)"TaMoQdy’ (A3)

where |A| denotes the length of A. The operator A* can be easily extended
to vector densities a valued on arbitrary exterior products A? V*J.Y.
However, we do not need the explicit expression of this extension.

Now let #: J,Y > A™ TM be a Lagrangian density. Locally we write
¥ = Lw, where Lisalocal functionon J.Y. Let d¥: ,Y > A" T*M® V*J.Y
be the ordinary exterior differential of . Its local expression is

d¥=w®6,L dy'+arL dy})

Then the Euler-Lagrange operator associated with & is the morphism
Eo=A*d¥=8%:),,Y>N\" T*M® V*Y whose local expression is

Ey=@.L+ (-0 L) o ®dy (A4)

The variational operator 8 =A*d has the property 6°=0 (Bauderon,
1982). Tt follows that 8Ey = 8% =0.

As is well known, if £ = d, where  is an (m —1)-horizontal form,
ie., ¢: J_,Y->A\"""' T*M, then we have 8d,y =0. In other words, Ey
vanishes identically. The operator dy is the formal exterior differential (the
lower index H recalls that d;; acts on horizontal forms). Locally we write
¢ = ¢ w,, where " are local functions on J,_, Y and

0, =0, |o=(-1D)""Tdx"' A -adi*r---andx™

Then the local expression of the Lagrangian density is ¥ = J ¢ w.
An interesting formula is

LAMES’ = L)\u&%’ = 8L,\u$ = ELAm-T (AS)

where L,, denotes the Lie derivative with respect to the lift Au. Here and
in what follows it is understood that the liftings must be taken with respect
the appropriate prolongation of jet spaces (so we use the same symbol for
them).

Let us define an Euler- Lagrange-type operator as a morphism of the
following type E: J,, Y > A™ T*M ® V*Y. The operator E is called locally
variational if 6E = 0. This is just the necessary and sufficient condition for
E to be derivable from a sheaf of local Lagrangian densities (Bauderon,
1982).
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We can show that 8E =0 is just equivalent to the condition
A*(Au ] dE)Y=0 (A6)

for each vertical field u: Y- VY. The vertical fields can be replaced with
projectable ones. Indeed, using (A2), we easily see that (A6) is equivalent
to

A*(Au | dE)=0 (A7)

for each projectable vector field u: Y- TY. In these conditions d denotes
the ordinary exterior differential.

Let us consider the case of a second-order operator E:J,Y -
A" T*M® V*Y. Locally we write E = Exw ® dy’, where E; are local func-
tions on J, Y. Let u = u'9, be a vertical field on Y. Then, using (A1) or (A2),
we see that its lift over LY is

Au=u's,+Ju'at + I Ju'at (A8)
It follows that the variational condition (A6) can be written as
A*(Au | dE)=u'(3,E; —8,E;+ 1,8} E;— L,J,3}* B)w ®dy’
+J,u' (3} E;+8} B, —2J,0M* E)w ® dy’
+ L Ju' (3 E —a}* E)o ®dy’ (A9)
Since the vertical field u is arbitrary, (A6) is equivalent to the following
local conditions:
31*E;—9}*E;=0
3 E+9;E;—2J,07"E;=0
8:;E;—8,E;+J,3} E,~J,J,07“E; =0 (A10)
Now let E be an Euler-Lagrange-type operator and let u be®a project-
able vector field on Y. Then we have
L..E=A*(d\u | E+2Au | dE) (A11)
This is our master equation. It can be proved by a direct check using
(A1)-(A3).
If the operator E is locally variational, from (A7) and (A11) it follows
that

L..E=80u| E) (A12)

which holds for each projectable vector field u on Y.
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