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We study Euler-Lagrange-type operators, not necessarily variational (i.e., deriv- 
able from a variational principle). We get a master equation which is well suited 
for many considerations. We obtain several results in gauge theories: the 
equivalence between gauge invariance and charge conservation, the relationship 
between general covariance and conservation laws associated with the energy- 
momentum tensor, and, in the case of free gauge fields, an interesting characteriz- 
ation of the associated variational operators. 

1. INTRODUCTION 

As is well known, the Lagrangian formulation of the classical theory 
of  interaction between gauge and matter fields is the most convenient way 
of discussing gauge invariance, general covariance, and conservation laws. 
Moreover, the fiber bundle approach is almost unavoidable for a better 
understanding of the theory (Mayer, 1977; Konopleva and Popov, 1981). 

In this paper we are concerned with Euler-Lagrange-type operators 
that are not necessarily variational. We establish a formula for their Lie 
derivative (master equation) which has a key role in our considerations. 
The formula has two terms and, roughly speaking, the vanishing of one 
term refers to the condition that operators are variational, while the vanish- 
ing of the other refers to the conservation laws. So it is clear that, for 
example, the gauge invariance of variational operators may be equivalent 
to charge conservation. 

The paper is related to some earlier work on gauge theories (Mangiarotti 
and Modugno, 1985; Mangiarotti, 1986, 1987). The reader is urged to start 
with the Appendix, where we prove the master equation and discuss its 
relationship with variational operators. Concepts and results from jet spaces 
are needed. Let us note that, in general, the use of jet spaces, avoiding a 
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great deal of  unnecessary coordinate manipulations, makes the geometrical 
and physical meanings more transparent. 

Section 2 introduces some preliminary notations, concepts, and results. 
Section 3 deals with gauge-invariant and generally covariant Lagrangian 
densities. The next two sections are devoted to the relations among gauge 
invariance, general covariance, and conservation laws. Finally, in the last 
section we consider the sPecial case of free gauge fields and get an interesting 
characterization of the associated variational operators. 

2. PRELIMINARIES 

This section is a collection of basic notations, concepts, and results 
needed in subsequent considerations. The detailed proofs can be found in 
Mangiarotti and Modugno (1983, 1985) and Mangiarotti (1987). 

2.1. The Configuration Bundle 

Let P ~  M be a principal fiber bundle with structure Lie group G 
(Kobayashi and Nomizu, 1963). The base manifold M is the space-time 
manifold. A basic role is played by the quotient spaces VcP  = 
V P / G  c TGP = T P / G  which are vector bundles over M. The vertical bundle 
VaP ~ M is a Lie algebra bundle (gauge algebra bundle) whose fibers are 
isomorphic to g, the Lie algebra of G. 

A principal connection A on P (gauge potential) is then a splitting of 
the exact sequence of vector bundles over M, 

A 

0 - ~  VoP-~ T G P ' ~ T M  ~ 0 (2.1) 

It follows that principal connections A are sections of an affine bundle 
C ~ M whose vector bundle is the tensor product  bundle VC = T * M  | VoP. 

Let E -~ M be a vector bundle associated with P (matter bundle) and 
let L c  V2 T M ~  M be the bundle of the Lorentz metrics (M must satisfy 
well-known topological conditions). Since we are concerned with the inter- 
action among gravitational, gauge, and matter fields, our configuration 
bundle is Q ~ M ,  where Q = L X M K  a n d K - - C x M E .  

In o rde r  to introduce local coordinates, we need to choose a local 
gauge U • G on P, over a coordinate neighborhood (U, x A) in M, and a 
basis (ep) of  the Lie algebra g, where 1 -< A --< m = dim M and 1 -<p-< n = 
dim G. Then we denote by Cpq the right structure constants of  g with respect 
to the basis (ep). 

The induced standard coordinates on L, ToP, and C are denoted by 
(x ~, g ~ ) ,  (x x, ~x, ~:P), and (x ~, aP), respectively. If A is a principal connec- 
tion, its local expression is 

A = dx A | (0~ - A pep) (2.2) 
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where A p are local functions on M. These functions are just the gauge 
potentials of  A with respect to the gauge U x G, chart ( U, x x), and basis 
(ep). About the coordinates on C, we use the convention a ] o A = - A  p . 

A principal connection A induces a linear connection ~ 7A in the vector 
bundle VGP ~ M. It is easily seen that the connection parameters for ~ 7A a r e  

r p VAeq -cpqA~. dxX | (2.3) 

Now let p: g ~ E n d ( F )  be the Lie algebra representation associated 
with the matter  bundle E ~ M, F being its typical fiber. Let (ei) be a basis 
of  F, where l < i - < l = d i m F .  Then we put p(ep)ej - -  = p p j e i .  The induced 
standard coordinates on E are denoted by (x A, ~ ) .  It is clear that p 
determines a morphism of Lie algebra bundles p: V o P ~ E * |  whose 
local expression is just p ~  pJ" 

A principal connection A induces a linear connection V A in the vector 
bundle E ~ M. It is easi!y seen that the connection parameters for V A are 

V A e j  i p = ppjAA dx x | ei (2.4) 

We have two canonical objects related to our configuration bundle 
Q - ~ M ,  namely the curvature 2-form F: J 1 C - ~ A  2 T * M |  and the 
interaction 1-form y: C x M J~ E ~ T* M | E. Using the induced coordinates 

.p  i (x x, a p, a~,x) and (x A, ~ ,  ~[ )  on JIC and JIE, respectively, we find the 
local expressions of  F and y in the form 

. . . .  P q (2.5) F,x~ = a,,x - a~,~ - CpqaA ag 

i i i P ~J (2.6) 
3/A = ~ - - p p j a  A 

The meaning of F and y is clear. Let A: M ~  C be a principal connec- 
tion and let ~b: M ~  E be a matter  field. Then F OjlA = FA is the curvature 
of  A (field strength associated with A) and T o(A ,  j l qb )=va(b  is the 
covariant derivative of  ~b with respect to the linear connection ~ 7A induced 
by A on E - ~ M .  

2.2. Lagrangians and Operators 

Let ~f : L x M J~K -~ A m T* M be a Lagrangian density. Locally we write 
3 ? = L  o, where L is a local function on L XM JIK. The choice of  this 
particular jet extension, in which we do not consider the jets of  the Lorentz 
metrics, is motivated by the specific physical applications. I f  we fix a metric 
on M, this choice allows us to get automatically the metric energy- 
momentum tensor of  the interaction between gauge and matter fields. 

In the sequel we need the momentum map of  Sf, which is the direct 
sum of  the two following objects: 

m--1 

(Tr, x):  L x J~K-~ A T * M |  (2.7) 
M 
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x,. |174 ~r)'"=O;'~L (2.8) 77" ~ 7 'gp r h 

X=X;~~174 ei, X~ =O~t (2.9) 

where  wx = 0~ ] w. Note  that  X is an (m - 1)-hor izonta l  fo rm va lued  on E*.  
Using the representa t ion  p: V o P - E * |  we can do a pu l lback  of  it, 
namely  

J= P*X: L x J1K 
M 

.h j=jp~o~ | 

m - 1  

/k T ' M @  V* P 

; A  ~ i j h 
P p j~  ,,~ i J p  

(2.10) 

As we shall see, this is just  the current  associa ted with the mat te r  fields. 
Coming  to ~r, first o f  all note that  V*C = TM@ V*P. Then  it is clear 

that  we cannot  assert  that  ~- is an (m - 2 ) - h o r i z o n t a l  fo rm va lued  on V*P. 
As we shall see, this becomes  true when  5q is gauge invariant ,  and  this will 
be  relevant  in m a n y  considerat ions.  

Let E~e: J2Q ~ / ~ "  T ' M |  V*Q be the Eu le r -Lag range  opera to r  associ- 
ated with 5f (see the Appendix) .  Since we h a v e  V*Q = V2 T * M O  T M |  
V ' P O E * ,  it fol lows f rom (A.4) that  E~ is a direct sum, i.e., E~e = (z, e, ~7), 
where  

m - 1  

r: L x J I K ~  A T * M |  r=z~wAQdx  '~ (2.11) 
M 

m - I  

P (2.12) e: J 1 L x J 2 K ~  /~ T * M |  e=eptO~@e 
M 

rn 

rl: J,L x J 2 K ~ A  T * M |  ~ = rh6)| i (2.13) 
M 

The local expressions are 

Finally,  we in t roduce 

h r,~ = -2g:q3 0,~t3L (2.14) 

= O p L - J x T r  p (2.15) 

rh = O,L - JxX~ (2.16) 

the canonical  e n e r g y - m o m e n t u m  tensor  Tse 
associa ted  with Le. This is an object  as r [see (2.11)], whose  local express ion 
is 

T~ L 6 ~ -  p ;~,~ i ;~ = F ~ p  --'Yo~Xi (2.17) 

Its mean ing  will become  clear later. 
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2.3. The Basic Representation 

Let ~: M--> TGP be a section. We know from (2.1) that ~: projects into 
a vector field on M, say u:  M - >  TM. A basic fact is that we can associate 
with ~ a vector field on Q, say u~: Q-> TQ. This is just the infinitesimal 
version of the well-known fact that a principal automorphism on P induces 
an automorphism on C, E, and M (and hence on TM). The map ~->u~ is 
an R-Lie algebras morphism. Its local expression is 

~=uAG +~Vev, u=u~O~ 

U~=UAO,~ +(g~'OAu~ +g'~O,~U~ '~ (2.18) 

r p q A " " + c,,qa~ )or +p;A%Jo, 

where u A and ~P a;e local functions on M. 
Let us denote by the same symbol ur the lift of  the representation (2.18) 

on L • according to (A1). We say that the Lagrangian density 
~: L x h J1K --> A ~ T*M is generally covariant if we have L,r = 0 for each 
section ~: M--> ToP (when the sections ~: are vertical, i.e., we have ~: M-> 
VoP, we speak of gauge invariance). Using (2.18) and (A1), we find that 
is generally covariant iff the following conditions are satisfied: 

~,~  + ~ ,~  = 0 
A r p h a - -  i j A 

"B'q -~- C p q a  c~ Tr r' "r  p q j ~  X i = 0  

r p a i j , j h Cpq(aaO r L+ P A,~., aA,o,'rr,." ~+ pqj(r 3~L-,-r )=O (2.19) 

C = r~  

O~L=O 

where r~ and T~ have been defined in (2.14) and (2.17), respectively. The 
first three conditions are just equivalent to the gauge invariance of ~.  

Now let E =(~, e, ~7) be an Euler-Lagrange-type operator, i.e., r, e, 
and ~ are morphisms as shown in (2.11), (2.12), and (2.13), respectively. 
Moreover,  let us denote by the same symbol u~ the lift of  the representation 
(2.18) on J~L XM J2K according to (A1). We say that E is generally covariant 
if we have L , E  = 0 for each section ~: M--> T~P (when the sections 
are vertical, we speak of  gauge invariance). Since we have L~fi  = 
(L,d" , L ,e ,  L~I ) ,  it is clear that E is generally covariant (gauge invariant) 
iff ~-, e, and ~ are. From (A5) it follows that if  E = E~, i.e., if E is the 
Euler-Lagrange operator  associated with ~ ,  then E~ is generally covariant 
(gauge invariant) if 3~ is. In general, the converse is not true. 

It is easily seen that the canonical energy-momentum tensor T~ associ- 
ated with ~ ,  as defined in (2.17), has the property 

L.~Tse = TL. ~ 



794 Giachetta and Mangiarotti 

for each section ~: M --> TGP. It follows that T~ is generally covariant (gauge 
invariant) if ~ is. 

As we have done for ~,  we could write explicitly the conditions that 
E must satisfy to be generally covafiant (gauge invariant), but we do not 
need them. 

3. COVARIANT LAGRANGIAN DENSITIES 

In this section we consider gauge-invariant and generally covariant 
Lagrangian densities. The aim is to obtain two identities which have a key 
role in subsequent considerations. We also consider some questions related 
to charge conservation. 

3.1. Gauge-Invariant Lagrangians 

As before, let ~ :  L x M  J 1 K  --> A "  T * M  be a Lagrangian density. Then 
we can interpret the conditions of gauge invariance, i.e., the first three 
conditions (2.19), in an interesting way (Mangiarotti, 1986, 1987). The first 
condition tells us that ~- is just an (m-2 ) -ho r i zon t a l  form defined on 
L XM J1K  and valued on V * P .  Then, using the jet shift exterior covariant 
differential induced by (2.3) (Mangiarotti, 1987), we can compute 
Vet: J1L x M  J2K  -->/k "-~ T ' M |  V ' P ,  getting 

V "77" - -  A ,p .  r p Ix, h q = (J~crq +Cpqa~crr ) t % |  (3.1) 

Note that the difference between (3.1) and the usual exterior covariant 
differential is that we have the formal derivatives instead of the partial ones. 
Hence, the form Vcr is lifted over .IlL XM J2K. 

It follows easily that the second condition (2.19) is equivalent to 

e = V ~- - j  (3.2) 

where j = P*X is the current given by (2.10). 
A further computation for vzTr yields 

V2~r: L x J I K - + ~ T * M |  
M 

(3.3) 
r p h i p j h q V277. _Cpq(axOrL + p x,,~ = a ~ , , ~ r  +prjaAq~Xi)w@e 

which will be used later. Note that V2~ - projects down onto the original 
space L x M J~ K. 

Finally, another computation shows that the third condition (2.19) is 
equivalent to 

Ve p ' r / = 0 ,  J A e ~ - r  p X i j -- Cpqa x e r - p q;~o "qi = 0 (3.4) 
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where V is again the jet differential as in (3.2) and p*~? denotes the pullback 
as in (2.10), This is just, as we shall see, the charge conservation identity 
associated with the internal symmetries. 

3.2. Generally Covariant Lagrangians 

Suppose that ~ is gauge invariant and, moreover, suppose also that 
satisfies the fourth condition (2.19), i.e., ~- = T. Then a direct computation 

yields 

- - / ~  ;~ ' / ' /3  - - / ~ o a e r  - -  T,~ T/i : a~L (3.5) 

where 2KOa~=gOO(Oag~+O,g,x-a,gx~) are the Christoffel symbols. It 
follows that the last condition (2.19) is equivalent to 

V ~ - - F ]  e - T ]  ~7=0 (3.6) 

which has an intrinsic meaning. Here V denotes the jet shift exterior 
covariant differential induced by the Levi-Civita connection, as is clear from 
(3.5). Moreover, the symbol J denotes obvious contraction. This is the 
energy-momentum tensor identity associated with the external symmetries. 

Let us make some remarks about (3.6). Let u: M-* TM be a vector 
field. Then we have 

dH(u ] r ) = V u  ] r + u  ] Vr (3.7) 

where dH is the formal exterior differential (in which we take the formal 
derivatives instead of the partial ones; see also the Appendix) and V is the 
jet shift differential as in (3.6). We also have 

Vu ] "r = -2(O~u" + K~ = Lug'~O,~t3Lto (3.8) 

where we have used the definition (2.14) of  r. 
Now suppose that we fix a metric on M and that u is a symmetry of  

this metric (i.e., a Killing vector field). Then from (3.6)-(3.8) it follows that 
u ] ~- is a conserved current. 

3.3. On Charge Conservation 

As is well known, the standard physical situation is that in which we 
have 

~ = 3?o+ ~M, ~o=C2ooF, ,~M:(~M~ (3.9) 

where ~0 and ~M are Lagrangian densities defined on the spaces 
L xM A 2 T ' M |  VcP and L xM T * M |  respectively. In other words, 
this is the minimal coupling situation. 
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Let us put ~M = LM a~, where LM is a local function on L xM C xMJIE .  
Then we have 

@ L M +  i j ppj~P Oi LM = 0 (3.10) 

i.e., "~ jp = - O p L ~ ,  as follows from (2.10). So the current j is just given by the 
first variation of the matter  Lagrangian 5r with respect to the gauge 
potential. 

From (3.9) it follows easily that both ~o and 5r (and hence ~ )  satisfy 
the first two conditions (2.19). Then, using (3.3), we easily see that the two 
following statements are equivalent 

(i) Both ~o and 5 ~  are gauge invariant. 
(ii) 5~ is gauge invariant and V2~r = 0. 
A gauge-invariant Lagrangian ~o is just a free gauge field, while the 

gauge-invariant Lagrangian ~M describes the interaction between gauge 
and matter fields without the mass terms. Note that e o = V ~  is just the 
Euler-Lagrange operator associated with ~o and that V2~r = 0 is just the 
charge conservation identity for free gauge fields. As we shall see later, if 
Co: JIL XMJ2K --> A"* a T ' M |  V*  P is a gauge-invariant E u l e r - L a g r a n g e -  

type operator, then e0 is locally variational iff XTeo = 0. 
Now let us fix a Lorentz metric on M and let us consider any Lagrangian 

density ~ :  J~K-->A m T*M.  It is interesting to see how, in this general 
situation, the condition V2~ = 0 allows us to discuss, in a nice way, the 
conservation of charge in both of the two cases in which (i) one uses the 
dynamics of  the gauge field without the equation of  motion of the charged 
field at all and (ii) one uses the gauge invariance without using the dynamics 
of  the gauge field at all. 

(i) Suppose that 5r satisfies the first two conditions (2.19). Then from 
(3.2) we get 7 j = - V e  and hence j yields conserved currents over the 
solutions of  e. 

(ii) Suppose that ~ is gauge invariant. Then from (3.2) and (3.4) we 
get Vj = - p % 7  and hence j yields conserved currents over the solutions 
of  ~7- 

4. GAUGE INVARIANCE AND CHARGE CONSERVATION 

In this section we consider locally variational operators of  the Euler-  
Lagrange type. The main result is the relationship between the gauge 
invariance of such operators and the charge conservation identity. Moreover,  
we consider the special case in which the structure group G is Abelian or 
semisimple. Our results improve those of Horndeski (1981). 

Theorem 4.1. Suppose that E = (% e, 7) is a locally variational Euler-  
Lagrange-type operator,  that is, 6E = O, where 6 is the variational operator 
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introduced in the Appendix. Then the two following conditions are 
equivalent: 

(i) E is gauge invariant or, equivalently, r, e, ands7 are. 
(ii) V e - p * ~  projects down to the base space M, i.e., we get V e -  

p ' r / :  M - ~  A m T * M |  V *  P. 

Proof  Let ~: M ~  V c P  be a vertical section. Then from (A12) we get 

LueE = 6(u~ ] E )  (4.1) 

where, on the right, u~: K --> VK is the vertical field given by (2.18), that is, 

u e = (OA~ r + C~pqa] scq)o~ + p~fP~Joi  (4.2) 

On the left-hand side of (4.1), u~ denotes the second lift of (4.2). 
Using the identity 

d,(~zJ e ) = V # J  e+~:]  Ve (4,3) 

from (4.2) we get 

ue] E = V ~  c] e+~:]  p*'q=dH(~:J e ) - ~ ]  ( r e - p ' r / )  (4.4) 

Here V denotes, as is clear, the jet shift differential induced by (2.3). 
Since we have (see the Appendix) 6dH(~:] e ) = 0 ,  using (4.4), from 

(4.1) we get 

LueE = - t ~ [ ~  J (Ve - P ' n ) ]  (4.5) 

Now let us denote by 0p the components of V e - p * r /  according to 
(3.4). Then, using (A4), we can write explicitly the right-hand side of (4.5). 
By requiring that it vanishes for each vertical section s c, we get a set of 
equations that must be satisfied by the components ~0p. The ones relative 
to the bundle J 2 L ~  M are 

A/~ tzA a~Op +0~q,p =0 
A/x /z 2J~ (0~t~ffp) - 0 ~ 0 p  = 0 (4.6) 

A/x A which imply that O~t3tfl p = O,t3~p = O~t3tfl p = 0. In other words, all the fiber 
derivatives of ffp with respect to the bundle J 2 L ~ M  vanish. From the 
other equations we get the same things concerning J3K ~ M. The result is 
proved. �9 

R e m a r k  4.2. Let (: M ~ ToP be a section. Then it is easily seen that 
we have 

L , e ( p * r l ) = p * ( L , J I )  , L , , V e  =VL ,ee  (4.7) 

where u e is the lift of (2.18) on the appropriate jet space. 
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Corollary 4.3. Suppose that the structure Lie group G is Abelian or 
semisimple. Then the following conditions are equivalent: 

(i) E is gauge invariant or, equivalently, % e, and r/ are. 
(ii) V E - p % 7  =0.  

Proof. Suppose that E is gauge invariant and let ~: M ~ "CaP be a 
vertical section. Then from (4.7) we get L e ( V e - P % 7 )  = 0 for each ~. This 
is equivalent to Cpqtp, = O, Vp, q. The result follows (Bourbaki, 1975). �9 

5. G E N E R A L L Y  C O V A R I A N T  O P E R A T O R S  

In this section we consider locally variational and gauge-invariant 
operators of  the Euler-Lagrange type. The main result is that these operators 
then are generally covariant iff the further identity Vz - F ] e - 3' J ~7 = 0 is 
satisfied. 

Lemma 5.1. Let ~: M--> TaP be a section and let A be a principal 
connection. Then the connection A splits the section ~: into a vertical part  
~:A a n d a  horizontal part  u J A (the vector field u: M--> TM is the projection 
of ~:) whose local expressions are 

~A=(~P + A~uA)ep, U] A=uA(O~-A~ev )  (5.1) 

as follows from (2.2). Let us denote by UA the lift of  u J A over Q and by 
UA: .11Q --> VQ its Vertical part, as explained in the Appendix. Then we have 

be. r r 
a a = -(L~g~)O~-[u (a~,x+OaA.+ CpqaxA~)r p q 

r r /z 3, ( V  u @ ) 0  i ( 5 . 2 )  +(a~+A, )O~u  ]Or-- a i 

Proof. The local expression of UA is 

tz r UA = uXOx +(gX"Oxur +gXr --[U OxA, 

r r ~ i p A j CpqaxA~u ]0~ - p p j A x u  ~ Oi + ( A , + a , ) O x u  + " v q " ~ (5.3) 

as follows from (2.18). Then we get (5.2) from (A2). �9 

Lemma 5.2. Let E =(% e, 7/) be an Euler-Lagrange-type operator. 
Then we have 

aaj  E = u  J ( V z - F  J e - 3 ' J  r l ) + ~  J ( V e - p * ~ )  

- d , ( u  J r+  r ] s) (5.4) 

where ~,: C ~  VGP is the morphism given by ~:, = u~(a~+ArA)er. 
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Proof The result follows from (5.2) using (3.7) and (3.8). �9 

Proposition 5.3. Suppose that E is locally variational and gauge 
invariant. Then we have 

L.E = 3(aa ] E)  = L.AE 

= 6 [ u J  ( V ~ - - F ]  e - y J  ~7)]+u ] (Ve-p*~7) (5.5) 

where u~ denotes the second lift of  the section ~: M-> TaP. Note that (5.5) 
is independent of the connection A. 

Proof. This follows from (5.4) using (A12) and the fact that 

~a.(u 3 ~+~u ] ~ ) = 0  �9 
Remark 5.4. Let sq M-> ToP be a section. Then it is easily seen that 

we have 

LueVr = VLueT, Luy = O, Luey= 0 (5.6) 

Theorem 5.5. Suppose that E is locally variational. Then the two 
following conditions are equivalent: 

(i) E is generally covariant or, equivalently, r, e, and 77 are. 
(ii) V e - p * ~ / = 0 ,  V ~ - - F J  e - y ]  ~/=0. 

Proof. Suppose that E is generally covarianti Then it is easily seen that 
V e - p % / = 0 .  From (5.5) it follows that V-r-FJ e - y J  ~/ projects down 
on the base space M. Using (5.6), we get that V~'-  F j e - y J ~/= 0. The 
converse is trivial. �9 

Remark 5.6. Let E = (% e, ~/) be an Euler-Lagrange-type operator. Let 
A be a principal connection. We say that E is A-horizontally invariant if 
LUA E = 0. Clearly, if E is gauge invariant and horizontally invariant with 
respect to a certain connection A, then it is generally covariant. 

Note that if E = E~e and ~ is horizontally invariant with respect to a 
certain connection A, then E~ is generally covariant if it is gauge invariant. 

6. A P R O P E R T Y  O F  FREE G A U G E  F I E L D S  

In this section we consider a free gauge operator, i.e., an Euler- 
Lagrange-type operator defined on the bundle of connections, namely 

m - - 1  

Co: J2C--> A T*M|  

Our main result is the following. Suppose that eo is gauge invariant, then 
3eo = 0, i.e., eo is locally variational iff Veo projects down on M, i.e., we get 

Veo: M ~  T*M| 
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Lemma 6.1. Let u: C ~  VC be a vertical field and let A be a principal 
connection. Let x ~ M. Then there exists a vertical section ~: M ~ VGP such 
that  

(u oj2A)(x ) = (u~ oj2A)(x ) (6.1) 

Here, on the left, the same symbol u denotes the second lift of  the field 
on J2C. 

r A r Proof Let us put u = u x 0 r ,  where u~ are local functions on C. 
Moreover, let ~ = ~:'er be a vertical section. The vertical field u~: C ~ VC 
associated with ~ is, according to (2.18), 

r h u e = (V~z)a0r, (V~)~ = G~r+  c~qaP~ q (6.2) 

Using (A8), we see that if we want to get (6.1), we must have 

Ox~r(x) = c;qA](x)~q(x) + u i (A(x) )  
2 r Ox~ (x) = c;qo~aPx(x)~q(x) + c;qa~(x)O~q(x) 

+ J~u~(j ,a(x))  (6.3) 

0 ~ o A ( x ) =  ~ ~ ~ cpqO~t~aA (x ) (  (x) + e~q(o~aPA(x)Ot3~q(x) + o~aPx (x)o~q(x)  ) 

+ c~qa~(x)O]t3(q(x) + J j~u~( j2a(x) )  

Now (6.3) shows that, if we fix the value ~:(x), then the derivatives of ~: in 
x are uniquely determined. Hence, the result follows. �9 

Proposition 6.2. The variational condition (A6) is equivalent to 

h*(u~ J deo)=0 (6.4) 

for each vertical section ~. The operator )t* is defined in (A3) and d denotes, 
as in (A6), the ordinary exterior differential. In other words, (6.4) is 
equivalent to 6Co = 0, which is just the necessary and sufficient condition 
for eo to be derivable from a sheaf of  local Lagrangian densities. 

Proof The result follows immediately from (A9) and (A10) using 
(6.1). �9 

Theorem 6.3. Any two of  the following statements imply the third: 
( i )  ,~eo = 0.  

(ii) eo is gauge invariant. 
( i i i )  Veo projects down to the base space M. 

Proof Let ~: M ~ VoP be a vertical section. Then the results follow 
easily from the master equation (Al l ) ,  

L,,eo = 6(V~ ] eo)+ h*(u~ ] aeo) (6.5) 

using (4.3). �9 

Remark 6.4. Suppose that the structure Lie group G is Abelian or 
semisimple. Then the condition (iii) becomes 7 e o =  0. 
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A P P E N D I X  

In this Appendix we introduce some notations, concepts, and results 
from jet spaces (Mangiarotti  and Modugno,  1983), the minimum needed 
to establish the master equation, a basic result for our considerations. We 
also study its relationship with variational operators. 

Let Y-> M be a fiber bundle and let (x ~, yi) be fibered coordinates on 
Y, 1 -< A --< m = dim M, 1 -< i -< l, l + m = dim Y. The induced coordinates on 
the first jet space J I Y  are denoted by (x ~, i y , y ~ ) .  The meaning is the 

i following. Let s: M--> Y be a (local) section and put f ro  s = s ,  which are 
local functions on M. Let jls: M-->J1Y be the first jet extension of  the 
section s. Then we have y~ ojls = O~s ~, i.e., the partial derivatives of  s ~ with 
respect to the coordinates x ~. 

As usual, the coordinate fields associated with (x ~, ~ y ,  y~) are denoted 
by 0A, 0i, and 0~, respectively. Note that 0i are local vertical fields on Y, 
i.e., local sections of  the vector bundle VY-> Y, where V Y c  T Y  is the 
vertical space to Y, T Y  being the tangent space to Y. Moreover,  both the 
fields 0~ and 0~ are local vertical fields on J1 Y, i.e., local sections of  
the vector bundle VJ1Y->JI Y. As we shall see, the vertical spaces are a 
main tool in our considerations. 

All that we have said generalizes immediately to the higher-order jet 
spaces JkY, k > 1. For them the standard multi-index notation will be used. 
In any case, we will be only concerned with the lower jet extensions. 

A basic operation on jet spaces is the following. Let u: Y--> T Y  be a 
i U A projectable vector field on Y. Locally we write u = u~O~ + u 0~, where 

and u ~ are local functions on M and Y, respectively. Then u can be lifted 
into a (projectable) vector field on JkY, say Au: JkY-> TJkY, whose local 
expression is 

Au = uA O~ + u %  + u~O~ 
(A1) 

i - - .  i i 
U ~ +  A - -  J x u  A - y ~ + A O x U  

where A is a multi-index and JA denotes the formal derivative with respect 
to x a. It is easily seen that u~-~Au is an N-Lie algebra morphism. 

Using the projections Ok: Jk+a Y xM TJkY-> VJkY (Mangiarotti  and 
Modugno,  1983), we can define a verticalpart of Au, say Au: Jk+~ Y'-> VJkY 
whose local expression is 

- -  - i  - i  A / ~ i  : :  u i  i / ~ a  
A l l  = U Oi + J A  u Oi , --  y ~  (A2) 

Note that A--ff is a vertical vector field iff u is vertical, i,e., u ~ = 0 for each 
l_<A_<m. 

The lifting A admits a dual operation (Bauderon, 1982) acting on vector 
._> m densities in the following way. Let a :  JkY /~ T ' M |  V*JkY be a vector 
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density defined over J k Y  and valued on the dual vertical space V*JkY.  
Locally we write a = to | ( aidyi + a A dy~A), where to = dx i ^ .  �9 �9 ̂ dx  m, while 
ai and a A are local functions on JkY. Then a can be lifted into a vector 
density defined over J2kY  and valued on V ' Y ,  say 

m 

A ' a :  J 2 k Y ~  A T * M |  

whose local expression is 

A*c~ = (a ,+( - -1 ) lAI jaaA) to |  (A3) 

where IAI denotes the length of A. The operator A* can be easily extended 
to vector densities a valued on arbitrary exterior products A p V*JkY.  
However, we do not need the explicit expression of this extension. 

Now let ~ :  JkY--> A m T M  be a Lagrangian density. Locally we write 
= Lzo, where L is a local function on Jk Y. Let dAf: Jk Y -'>/~ m T * M  | V*Jk Y 

be the ordinary exterior differential of ~. Its local expression is 

d ~  = to | (Oi L dy i + OAL dy~A) 

Then the Euler-Lagrange operator associated with ~ is the morphism 
E~ = A* d ~  = 8~:  J2kY--* A m T ' M |  V* Y whose local expression is 

E~e = (OIL+ (--1)IAIJAoAL)to | dy i (A4) 

The variational operator 6 = A*d has the property 62= 0 (Bauderon, 
1982). It follows that 8E~e = 6 2 ~  = O. 

As is well known, if Ge = dx~P, where ~ is an (m - 1)-horizontal form, 
i.e., ~b: Jk-~ Y ~  A m-1 T ' M ,  then we have 6duo  = 0. In other words, E~e 
vanishes identically. The operator dH is the formal exterior differential (the 
lower index H recalls that dx acts on horizontal forms). Locally we write 

= @atoa, where @~ are local functions on J k - l Y  and 

tox =0z J to = (-1)a-1 dxl^ . .  . ^ d ~ A ^  . .  . ^ d x  m 

Then the local expression of the Lagrangian density is ~ = J~$~to. 
An interesting formula is 

L;~E~ = Laur~  = 6LAu~ = ELapSe (AS) 

where Lxu denotes the Lie derivative with respect to the lift Au. Here and 
in what follows it is understood that the liftings must be taken with respect 
the appropriate prolongation of jet spaces (so we use the same symbol for 
them). 

Let us define an Euler-Lagrange- type operator as a morphism of the 
following type E:  J 2 k Y ~ / ~ m  T ' M |  V* Y. The operator E is called locally 
variational if 3E = 0. This is just the necessary and sufficient condition for 
E to be derivable from a sheaf of local Lagrangian densities (Bauderon, 
1982). 
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We can show that ~E = 0 is just equivalent to the condition 

h*(hu ] d E ) = 0  (A6) 

for each vertical field u: Y ~  VK. The vertical fields can be replaced with 
projectable ones. Indeed, using (A2), we easily see that (A6) is equivalent 
to 

h*(Au J d E ) = 0  (A7) 

for each projectable vector field u: Y ~  TY. In these conditions d denotes 
the ordinary exterior differential. 

Let us consider the case of a second-order operator E : J 2 Y +  
A "  T ' M |  V*Y. Locally we write E = Eico| i, where Ei are local func- 
tions on J2Y. Let u = u'O~ be a vertical field on Y. Then, using (A1) or (A2), 
we see that its lift over J2 Y is 

hu = uiO, + J;~uiO~ + J;,J~,uiO~ ~" (AS) 

It  follows that the variational condition (A6) can be written as 

A*(Xu ] d E ) =  u'(cg,Ej-~gjE, + Jxe~ E , -  J;J,O~." E,) to|  i 
i A ,k A,u. j + Jxu (Oi E2 + O j E,-2J~c~i E,)co| 

+ JAJ.ui(cg~ ~ Ej - a) ~ Ei)co | dy j (A9) 

Since the vertical field u is arbitrary. (A6) is equivalent to the following 
local conditions: 

a Ej 2J,,a)" E, = o 
A A/x O,E a - OjEi + Jxcgj E, - .laJ, a a E, = 0 (AIO) 

Now let E be an Euler-Lagrange-type operator  and let u be ' a  project- 
able vector field on Y. Then we have 

LAuE=A*(d-X-ff] E+A-u J dE) ( A l l )  

This is our master equation. It can be proved by a direct check using 
(A1)-(A3). 

I f  the operator  E is locally variational, from (A7) and ( A l l )  it follows 
that 

L~uE = 8(AuJ E)  (A12) 

which holds for each projectable vector field u on Y. 
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